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We propose an alternative SPH scheme to usual SPH Godunov-type methods for simulating
supersonic compressible flows with sharp discontinuities. The method relies on an adaptive
density kernel estimation (ADKE) algorithm, which allows the width of the kernel interpo-
lant to vary locally in space and time so that the minimum necessary smoothing is applied
in regions of low density. We have performed a von Neumann stability analysis of the SPH
equations for an ideal gas and derived the corresponding dispersion relation in terms of the
local width of the kernel. Solution of the dispersion relation in the short wavelength limit
shows that stability is achieved for a wide range of the ADKE parameters. Application of the
method to high Mach number shocks confirms the predictions of the linear analysis. Exam-
ples of the resolving power of the method are given for a set of difficult problems, involving
the collision of two strong shocks, the strong shock-tube test, and the interaction of two
blast waves.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Since its invention [1,2], the method of Smoothed Particle Hydrodynamics (SPH) has been applied to a large number of
complex, nonlinear phenomena, ranging from large-scale cosmological and astrophysical flows [3–12] to small-scale fluids
(liquids and gases) [13–21] and solids [22–27]. SPH is a fully Lagrangian method based on kernel interpolation in which
matter is discretized into point particles which move with the flow without exchanging mass. The parameter indicating
the resolution in a continuum description of the flow with a certain interpolating kernel function is referred to as the
smoothing length h. As the particles move with the fluid flow, an inhomogeneous particle distribution will be produced.
In standard SPH the smoothing length is adjusted to the particle distribution by allowing each particle to have a unique value
of h that varies with time and space so that the number of neighboring particles within the interpolation space is kept
roughly constant. However, it has been recently shown that the fidelity of SPH simulations greatly improves when the num-
ber of neighbors is kept exactly constant because this condition results in an effective reduction in the rates of numerical
dissipation and diffusion [28]. Although the method is well suited to hydrodynamic problems that have large empty regions
and moving boundaries, it gives a rather poor description of strong shock phenomena. In general, conventional SPH yields
shock profiles that are not as sharp as those for exact, or approximated, Riemann solutions.

Reformulations of SPH for handling strong shocks and discontinuities with the same accuracy of high quality Godunov-
type schemes have been independently proposed by Monaghan [29], Inutsuka [30], Cha and Whitworth [31], and Ferrari
et al. [32]. A common feature of all these methods is the combination of standard SPH with Riemann solvers. In particular,
Monaghan [29] focused on relating the dissipative terms in the SPH equations to those appearing in Riemann formulations
. All rights reserved.
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and working with the total energy equation rather than the thermal energy equation. Inutsuka [30] and Cha and Whitworth
[31] proposed similar schemes where the force acting on each particle is determined by solving the Riemann problem in the
vicinity of the midpoint between each pair of interacting particles. This procedure is the analog to that employed in Godu-
nov-type methods which use a Riemann solver to calculate the flux at the border of each computational cell. More recently,
Ferrari et al. [32] devised an SPH method that relies on the use of Godunov-type schemes in Lagrangian coordinates. As ex-
pected, SPH formulations based on Riemann solvers have performed well at solving sharp discontinuities for a variety of
shock problems.

Alternative SPH formulations for handling strong shocks, which do not rely on Riemann solvers, have also started to ap-
pear. A method that yields accurate solutions for the problem of two interacting blast waves [33] and for a variety of difficult
magnetohydrodynamic shock problems was developed by Børve et al. [34]. In their approach, the particle distribution is used
to shape the smoothing length profile and not vice versa which has normally been the case. The particle distribution is then
redefined at appropriate intervals in accordance with a previous update of h. This makes the particle distribution more reg-
ular than with ordinary SPH, thereby reducing the errors associated with the estimation of gradients. Moreover, an SPH
method based on an adaptive density kernel estimation (ADKE) in the way described by Silverman [35] was recently reported
by Sigalotti et al. [36]. When it is applied to supersonic compressible flows with sharp discontinuities, as in the classical Sod’s
[37] shock-tube problem and its variants, the accuracy of the results becomes comparable, and in most cases superior, to that
obtained with Godunov-type methods and SPH formulations based on Riemann solutions. Unlike existing adaptive SPH
schemes, this class of estimates requires a less broad kernel in zones where the density is low, implying that the minimum
necessary smoothing is applied in these regions. This feature allows for a unique scheme that handles strong shocks and rar-
efactions the same way and improves the accuracy and stability near sharp discontinuities.

The ADKE algorithm combines intrinsic features of both the kernel and nearest neighbor approaches such that the
amount of smoothing applied to the data is minimized. The heart of the method lies on estimating the density at the location
of particles to construct a collection of bandwidth factors, or kernels, in order to allow the final smoothing length to vary from
point to point. The definition of the local bandwidth factors involves two free parameters, which can be conveniently chosen
to reduce the rates of numerical dissipation and diffusion. Through a linear analysis of the SPH equations, we derive the cor-
responding dispersion relation and solve it in the short wavelength limit to obtain the dependence of the frequency on the
local bandwidth factor. The solution of the dispersion relation indicates, in a first approximation, that stability can be guar-
anteed for a wide range of the ADKE parameters. While this analysis validates the results obtained by Sigalotti et al. [36] for a
suite of well-known one- and two-dimensional shock problems, in this paper we show that the scheme is also able to accu-
rately reproduce the solution of more difficult tests, involving the collision of two strong shocks [38], the shock-tube problem
of Fryxell et al. [39] containing a very strong shock, and the interaction of two blast waves introduced by Woodward and
Colella [33].

2. The Euler equations

The equations that govern the dynamics of a compressible fluid, for which the effects of body forces, viscous stresses, and
heat flux are neglected, written in Lagrangian coordinates ðx; tÞ in one-dimensional space, are
Dq
Dt
¼ �q

@v
@x

; ð1Þ

q
Dv
Dt
¼ � @p

@x
; ð2Þ

q
DU
Dt
¼ �p

@v
@x

; ð3Þ
where D=Dt ¼ @=@t þ v@=@x is the substantial or material time derivative, q is the density, v is the velocity, U is the specific
internal energy, and p is the pressure defined by the equation of state of an ideal gas
p ¼ ðc� 1ÞqU; ð4Þ
where c is the ratio of specific heats.

3. The SPH equations

In standard SPH, the density qi of particle i is calculated using the summation interpolant
qi ¼
XN

j¼1

mjWij; ð5Þ
where the summation includes the contribution of particle i itself and Wij ¼Wðjxi � xjj;hÞ is the kernel, or weight, function
and h is the smoothing length. In practice, smoothing kernels with compact supports are almost always used, so that a finite
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number N s of particles around xi contribute to the estimate of qi. When Eq. (5) is used to calculate the density, variational
consistency will demand using symmetrized SPH representations for Eqs. (2) and (3) [40].

The symmetrized SPH discretization of the Euler and specific internal energy equations are
dv i

dt
¼ �

XN

j¼1

mj
pi

q2
i

þ
pj

q2
j

þPij

 !
@Wij

@xi
; ð6Þ

dUi
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¼ �1
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þ
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q2
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þPij

 !
ðv j � v iÞ þ 2Hijðxj � xiÞ

" #
@Wij

@xi
: ð7Þ
The derivation of these symmetrizations are explained in [36]. In calculations of compressible flows involving the formation
and propagation of shocks, an artificial viscosity term, Pij, must be added to the SPH equations to dissipate postshock oscil-
lations in the solution and avoid particle interpenetration in high Mach number collisions. As in [36], for the artificial vis-
cosity we use the standard formulation [41–43]
Pij ¼
�a�cijlij þ bl2

ij

�qij
; ð8Þ
if ðv i � v jÞðxi � xjÞ < 0 and zero otherwise. Here
lij ¼
ðv i � v jÞðxi � xjÞ
hijðx2

ij=h2
ij þ g2Þ

; ð9Þ
where �cij, �qij, and hij are the average sound speed, density, and smoothing length between particles i and j, respectively, and
xij ¼ xi � xj. For the calculations of this paper we take a ¼ b ¼ 1 and g2 ¼ 0:01. With this choice of g2 smoothing of the veloc-
ity will only take place when the particle spacing is less than 0:1 h. The linear term in Eq. (8) produces a shear and bulk vis-
cosity, whereas the quadratic term is introduced to handle high Mach number shocks. This form of the artificial viscosity
conserves linear momentum and guarantees a positive definite entropy change due to dissipation. The use of an artificial
viscosity in Lagrangian methods may induce errors in the form of excessive heating. These errors, which are commonly re-
ferred to as wall-heating errors after Noh [44], often occur in calculations of infinite strength shocks. In order to significantly
reduce these errors, we add an artificial heat conduction term, Hij, to the specific internal energy given by [36]
Hij ¼
2HijðUi � UjÞ

�qijh
2
ij x2

ij=h2
ij þ g2

� � ; ð10Þ
where Hij is the averaged artificial conduction coefficient (normalized to the density) between particles i and j, with Hi de-
fined as
Hi ¼ g1hici þ g2h2
i
@v i

@xi

���� ����� @v i

@xi

� �
; ð11Þ
where g1 and g2 are constants of the order of unity. The artificial heat flux is activated only when the artificial viscosity is
nonzero. The first term on the right-hand side of Eq. (11) is linear in h and is a function of the local sound speed, whereas
the second term, which is quadratic in h, takes a finite positive value only when there is a compression ðr � v < 0Þ and van-
ishes otherwise. In the vicinity of a sharp discontinuity, this term dominates over the linear one and sets the magnitude of
the conduction coefficient. In addition, the SPH (Eqs. (5)–(7)) must be solved simultaneously with the equation
Dxi

Dt
¼ v i; ð12Þ
for the evolution of the particle positions.
The scheme implemented here differs from other formulations of the method in one important concern: the smoothing is

based on an ADKE procedure similar to the one proposed by Silverman [35]. Here we will only describe the most relevant
aspects of the method and refer the reader to [36,45] for a complete description. Most existing adaptive SPH calculations
are based on the nearest neighbor approach [46], in which broader kernels are used in regions of lower density. In contrast,
the ADKE method copes with this problem by choosing the kernel such that the amount of smoothing that is applied to the
data is minimized in regions of low density. In the first place, the method consists of calculating an initial, or pilot, density
estimate from the particle distribution using the summation interpolant
~qi ¼
XN

j¼1

mjWðxij; h0Þ; ð13Þ
where h0 is chosen by reference to an initial distribution. In practice, h0 ¼ DDx0, where D is some dilation factor of the initial
uniform interparticle separation Dx0. In the second step, local bandwidth factors, ki, are constructed for each particle i from
the pilot density estimates according to
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ki ¼ j
~qi

�g

� ���
; ð14Þ
where �g is a geometric mean of the pilot density, i.e.
log �g ¼ 1
N

XN

j¼1

log ~qj; ð15Þ
j is a constant scaling factor of the order of unity, and � is the sensitivity parameter defined in the interval 0 6 � 6 1. In the
third step, the adaptive estimator is obtained by redefining the width of the kernel at the location of particle i as hi ¼ kih0 and
by recalculating the density using Eq. (13) with h0 replaced by hi. In order to ensure conservation of linear momentum and
total energy the actual kernel estimate that is employed in Eqs. (5)–(7) to update the density, velocity, and specific internal
energy of the particles is based on the symmetrized form [46]
Wij ¼
1
2

Wðxij;hiÞ þWðxij;hjÞ
	 


: ð16Þ
If we set � ¼ 0 in Eq. (14), the method reduces to the fixed width kernel approach, while for � ¼ 1 the local bandwidth factors
will attain the largest sensitivity to variations in the density distribution, implying a greater difference between the smooth-
ing lengths in different parts of the sample.

4. The SPH dispersion relation

If we assume a traveling plane wave of the form
/ ¼ /0 þUeiðkx0�xtÞ; ð17Þ
where / may be either x;q;v ; p, or U, k is the wavenumber, x is the angular frequency, and U is a complex amplitude, and
define the unperturbed state ð/0Þ as a homogeneous isotropic fluid at rest (i.e., v0 ¼ 0), linearization of Eqs. (1)–(4) leads to
the well-known dispersion relation for the propagation of longitudinal acoustic waves in a fluid at rest
x ¼ �c0k; ð18Þ
where c2
0 ¼ cðc� 1ÞU0 is the adiabatic sound speed.

When standard SPH is applied to the simulation of deforming elastic solids, it becomes unstable to negative stress. This
instability, which is most commonly known as the tensile instability, causes an unphysical clumping of the SPH particles
towards stable configurations. The origin of the instability was first studied by Swegle et al. [47] through an analysis of
the SPH dispersion relation for elastic waves. Using similar linear analyses, Monaghan [26] and Gray et al. [27] found that
the tensile instability can be prevented by adding an artificial stress to the governing SPH equations. The instability is also
known to occur in gas dynamics where the pressure is always positive [48]. In a comprehensive study, Morris [49,50]
investigated the nature of this and other instabilities in depth, finding that the stability of SPH in general improves when
higher-order interpolants are used as kernels. The tensile instability was also found to arise in magnetohydrodynamic
(MHD) problems from a change in sign of the magnetic field stress tensor [4]. A remedy to this instability was first proposed
by Morris [50], and more recently, by Børve et al. [51] through an analysis of the dispersion relation for MHD waves. Similar
linear perturbation analyses were also recently developed by Cha and Whitworth [31] and Sigalotti and López [45] for gas
dynamic problems in the context of SPH Godunov-type and SPH-ADKE methods, respectively. In the present study, the von
Neumann stability analysis of the SPH equations differs from most previous analyses in that the resulting dispersion relation
is derived in terms of the local bandwidth factor, ki, defined by Eq. (14), in order to validate the ADKE algorithm for strong
shock problems.

4.1. SPH with artificial viscosity and with artificial heating

We first derive the SPH dispersion relation for the general case in which both the artificial viscosity and the artificial con-
ductive heating are retained in Eqs. (6) and (7). For simplicity, we consider an initial system where all particles are aligned
along the x-axis and equally spaced with separation Dx0. Therefore, all particles have the same mass m ¼ q0Dx0. As for the
continuum case, a small perturbation is added to the system such that
xi

qi

v i

pi

Ui

0BBBBBB@

1CCCCCCA ¼
x0;i

q0

0
p0

U0

0BBBBBB@

1CCCCCCAþ
X

D
V

ðc� 1Þ½q0U þ U0D�
U

0BBBBBB@

1CCCCCCAeiðkx0;i�xtÞ: ð19Þ
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With the aid of the following definitions:
Ai ¼ Dx0

XN

j¼1

sinðkx0;ijÞ
@Wij

@x0;i
; ð20Þ

Bi ¼ Dx0

XN

j¼1

1� cosðkx0;ijÞ
	 
 @2Wij

@x2
0;i

; ð21Þ

Ci ¼ Dx0

XN

j¼1

1
x0;ij

sin kx0;ij
� � @Wij

@x0;i
; ð22Þ

Di ¼ Dx0

XN

j¼1

sin kx0;ij
� � @2Wij

@x2
0;i

; ð23Þ

Ei ¼ Dx0

XN

j¼1

1þ cosðkx0;ijÞ
	 
 @Wij

@x0;i
; ð24Þ

Fi ¼ Dx0

XN

j¼1

1
x0;ij

1� cosðkx0;ijÞ
	 
 @Wij

@x0;i
; ð25Þ

Gi ¼ Dx0

XN

j¼1

1� cosðkx0;ijÞ
	 
 @Wij

@x0;i
; ð26Þ
where x0;ij ¼ x0;i � x0;j, substitution of relations (19) into Eqs. (5) and (12) yields the linearized equations
xD ¼ �q0VAi; ð27Þ

xX ¼ iV ; ð28Þ
while the momentum Eq. (6) and the specific internal energy Eq. (7) become
x2 þ ahic0ðCi � iFiÞ þ ðc� 1ÞðAi þ iEiÞ
U
V

� �
xþ p0

q0
fA2

i � 2Bi þ EiGi � i½AiðGi � EiÞ þ 2Di�g ¼ 0; ð29Þ
and
½xþ 2g1hic0ðCi � iFiÞ�
U
V
¼ � p0

q0
Ai � iGið Þ; ð30Þ
respectively, where we have made use of Eqs. (27) and (28). Introducing the dimensionless frequency
X ¼ c1=2Dx0x
c0

; ð31Þ
and combining Eqs. (29) and (30), we obtain the dispersion relation
X4 þ ~aX3 þ ~bX2 þ ~cXþ ~d ¼ 0; ð32Þ
where

~a

Dx0
¼ c1=2hi½ð4g1 þ aÞCi � iaFi�; ð33Þ

~b
Dx2

0

¼ 4g1h2
i c½ðaþ g1ÞC

2
i þ g1F2

i � � ðc� 2ÞðA2
i þ EiGiÞ � 2Bi � i½4ag1h2

i cCiFi þ ðc� 2ÞAiðEi � GiÞ þ 2Di�; ð34Þ

~c
Dx3

0

¼ 2g1hic1=2 2ag1h2
i cCiðC2

i þ F2
i Þ þ ðc� 1ÞAiFiðEi � GiÞ � Ci½ðc� 3ÞðA2

i þ EiGiÞ þ 4Bi�
n o

� i2g1hic1=2 2ag1h2
i cFiðC2

i þ F2
i Þ þ ðc� 1ÞFiðA2

i þ EiGiÞ þ Ci½ðc� 3ÞAiðEi � GiÞ þ 4Di�
n o

; ð35Þ

~d
Dx4

0

¼ 4g2
1h2

i cðC
2
i þ F2

i Þ A2
i þ EiGi þ i½AiðEi � GiÞ � 2Di�

n o
: ð36Þ
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Eq. (32) is a quartic complex polynomial relating the frequency to the wavenumber. Its solution admits four complex roots.
The response to small perturbations will be unstable if the imaginary part of at least one of these complex roots is positive,
that is, if ImðXÞ > 0. In this case, the perturbations, once having arisen, will grow indefinitely with time. In contrast, the re-
sponse will be stable either if the perturbations decay exponentially with time, in which case ImðXÞ < 0, or remain constant
in amplitude, in which case ImðXÞ ¼ 0. The expressions for the above coefficients simplify if we realize that Ai ¼ Ci ¼ Di ¼ 0
for a string of perfectly equidistant particles.

4.2. SPH without artificial viscosity and without artificial heating

If we set Pij ¼ Hij ¼ 0 in Eqs. (6) and (7), the corresponding dispersion relation can be obtained from Eq. (32) by setting
a ¼ g1 ¼ 0. In this case, all the coefficients vanish identically with the exception of ~b and Eq. (32) takes the form
X2

Dx2
0

¼ ðc� 2ÞðA2
i þ EiGiÞ þ 2Bi þ i½ðc� 2ÞAiðEi � GiÞ þ 2Di�; ð37Þ
which can be solved straightforwardly for X. In the limit when k� 1 and h� Dx0, the summations in Eqs. (20)–(26) can be
approximated by integrals. Therefore, if we define the Fourier transform of the kernel W as
fW ðkÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

Z þ1

�1
WðxÞ cosðkxÞdxþ i

1ffiffiffiffiffiffiffi
2p
p

Z þ1

�1
WðxÞ sinðkxÞdx ¼ fW c þ ifW s; ð38Þ
it is a trivial task to show that Ai ! �kfW c , Bi ! k2fW c , Di ! �k2fW s, Ei ! kfW s, and Gi ! �kfW s. Replacing these forms into Eq.
(37) and taking the limit of long wavelengths, k! 0, we find that fW c ! 1 and fW s ! 0, and therefore Eq. (37) reduces exactly
to the continuum dispersion relation (18).

Since Ai ¼ Di ¼ 0 for a linear array of equally spaced particles, the imaginary part of Eq. (37) vanishes and X2 becomes
real, yielding the simplified expression for the dimensionless frequency in the absence of dissipation
X2
00

Dx2
0

¼ ðc� 2ÞEiGi þ 2Bi; ð39Þ
which can be also shown to reduce to Eq. (18) for long wavelengths.

4.3. SPH with artificial viscosity and without artificial heating

We now consider the case when g1 ¼ 0, i.e., when the artificial heat flux is dropped from Eq. (7) and only the artificial
viscosity term is retained. In this case, the dispersion relation reduces to the quadratic complex polynomial
X2 þ ~aXþ ~b ¼ 0; ð40Þ
with
~a
Dx0
¼ ahic1=2ðCi � iFiÞ; ð41Þ

~b
Dx2

0

¼ �ðc� 2ÞðA2
i þ EiGiÞ � 2Bi � i½ðc� 2ÞAiðEi � GiÞ þ 2Di�: ð42Þ
For a linear array of uniformly spaced particles ðAi ¼ Ci ¼ Di ¼ 0Þ, the solution to Eq. (40) can be written as
XAV;0 ¼ �
1
2
½�a2h2

i cðDx0FiÞ2 þ 4X2
00�

1=2 þ i
1
2
ahic1=2Dx0Fi: ð43Þ
If the radicand is negative, XAV;0 will be a pure imaginary number. If, on the other hand, the radicand vanishes both imaginary
roots will be identical.

5. Stability analysis

We discuss the stability properties of our adaptive SPH method in response to longitudinal acoustic waves propagating
along the x-axis, with k ¼ p=Dx0, in the limit of short wavelengths. The rate of growth of the instability depends on the initial
distribution of particles, the kernel function, the value of h, and the equation of state. For the purposes of the present analysis
we shall consider an Eulerian kernel with nodal integration for various sizes of h. In the ADKE procedure, the actual width of
the kernel at the position of particle i is hi ¼ kih0. We may therefore solve the SPH dispersion relations (32), (37) and (40) to
get the dependence of the frequency on ki and look for the sign of the imaginary part of x. To do so we set h0 ¼ DDx0 and
consider values of D 6 4 so that only nearest and next nearest neighbors will contribute to the sums in relations (20)–(26).
When D ¼ 1 or 3=2, a total of N s ¼ 2 neighbors contribute to the kernel summations. For higher sizes of the kernel support,
the number of neighbors increases (i.e., N s ¼ 4 for D ¼ 2 or 5=2, N s ¼ 6 for D ¼ 3 or 7=2, and N s ¼ 8 for D ¼ 4). In addition,
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we assume that in the unperturbed state the particles are uniformly placed along the x-axis and use a Gaussian kernel mod-
ified for compact support according to
Fig. 1.
artificia
Wðq; hÞ ¼ 1
p1=2h

e�q2 if 0 6 q 6 3
0 if q > 3;

(
ð44Þ
so that the particles are not allowed to interact at distances from the peak of the distribution greater than 3 h. To check the
dependence of the results on the kernel, we have also used the cubic B-spline function [52]
Wðq; hÞ ¼ 1
h

2
3� q2 þ 1

2 q3 if 0 6 q < 1
1
6 ð2� qÞ3 if 1 6 q 6 2
0 if q > 2:

8><>: ð45Þ
In the above expressions q ¼ jxj=h, where for convenience we have shifted the position of particle i to xi ¼ 0.
The solution to the perturbation problem has a temporal dependence given by expð�ixtÞ ¼ exp½�iReðxÞt� exp½ ImðxÞt�.

Thus the amplitude of the perturbation amplifies (instability) when ImðxÞ > 0 and damps out (stability) when ImðxÞ < 0. If
ImðxÞ ¼ 0, the perturbed field oscillates with neither amplifying nor damping. In the discussion of the stability we use rela-
tion (31) and express the results in terms of the dimensionless frequency X.
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l viscosity) and g1 ¼ 0 (no artificial conductive heat).
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5.1. Case in which a ¼ g1 ¼ 0

In the absence of artificial viscosity ða ¼ 0Þ and artificial heating ðg1 ¼ 0Þ, Eq. (39) gives the dispersion relation for a linear
set of equidistant particles all with the same mass. Fig. 1 shows the square of the wave frequency as a function of the band-
width factor for varied lengths of the interpolation segment up to D ¼ 4, using the Gaussian kernel (44). The curves in
Fig. 1(a) depict the variation of X2

00 for integer values of D, i.e., D ¼ 1 (solid line), 2 (dashed line), 3 (dotted line), and 4
0 1 2 3
−2

−1

0

1

Im
(Ω

A
V

,0
 )

λ
 i

0 1 2 3
−2

−1

0

1

Im
(Ω

A
V

,0
 )

λ
 i

0 1 2 3
−2

−1

0

1

Im
(Ω

A
V

,0
 )

λ
 i

0 1 2 3
−2

−1

0

1

Im
(Ω

A
V

,0
 )

λ
 i

D=1 D=2

D=4D=3

Fig. 2. Imaginary part of the frequency as a function of the bandwidth factor, ki , for integer values of the dilation factor, D, for the case in which a ¼ 1 and
g1 ¼ 0. The most significant frequency corresponds to the solid line.

0 1 2 3
−2

−1

0

1

Im
(Ω

A
V

,0
 )

λ
 i

0 1 2 3
−2

−1

0

1

Im
(Ω

A
V

,0
 )

λ
 i

0 1 2 3
−2

−1

0

1

Im
(Ω

A
V

,0
 )

λ
 i

D=3/2 D=5/2

D=7/2

Fig. 3. Imaginary part of the frequency as a function of the bandwidth factor, ki , for fractional values of the dilation factor, D, for the case in which a ¼ 1 and
g1 ¼ 0. The most significant frequency corresponds to the solid line.



5896 L.D.G. Sigalotti et al. / Journal of Computational Physics 228 (2009) 5888–5907
(dot–dashed line), whereas those in Fig. 1(b) are for fractional values of the dilation parameter, i.e., D ¼ 3=2 (solid line), 5=2
(dashed line), and 7=2 (dotted line). When X2

00 P 0, the two roots of Eq. (39) are real numbers. In this case, the amplitude of
the perturbations will neither grow nor decrease with time. In addition, if X2

00 < 0, the frequency becomes a pure imaginary
number equal to �i

ffiffiffiffiffiffiffiffi
X00
p

. Since both solutions are possible, the oscillation modes may either amplify or damp, depending on
whether the sign is positive or negative, respectively.
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In particular, for D ¼ 1;X2
00 P 0 for ki K 1:416 and negative for all other values larger than this. Therefore, marginal sta-

bility occurs for most frequencies. For larger values of D, the point at which X2
00 changes from positive to negative occurs at

progressively lower ki’s, implying that the segment of marginal stability shortens as the size of the kernel support increases.
We see that for D P 1, unstable behavior occurs around values of ki close to unity, that is, when the ADKE method essen-
tially reduces to the fixed width kernel approach for which hi ¼ h0. Thus, the ADKE method affects the behavior of standard
SPH in the short wavelength limit, removing the instability provided that the two free parameters j and � in Eq. (14) are
chosen such that ki falls to the left of the point where X2

00 ¼ 0. A qualitatively similar analysis is obtained when the cubic
B-spline kernel (45) is used.
5.2. Case in which a–0 and g1 ¼ 0

When artificial viscosity is allowed, the solution of the dispersion relation is given by Eq. (43). Figs. 2 and 3 display the
imaginary part of the frequency as a function of ki for a ¼ 1, using the Gaussian kernel. Similar plots result for the cubic B-
spline kernel. Also in this case the solution consists of two distinct complex roots, which for low values of ki share the same
value of the imaginary part. For ki close to zero, the imaginary part of the frequency vanishes, indicating marginal stability.
The segment for which this happens shortens as D, or equivalently, the number of nearest neighbors increases. For D ¼ 1,
ImðXAV ;0Þ ¼ 0 for all values of ki K 0:328, whereas for D ¼ 4 the same is true for ki K 0:08. For larger values of ki, the imag-
inary part of the frequency becomes negative, implying complete stability. At some point, the solution bifurcates into two
different branches. This happens when the radicand in the first term on the right-hand side of Eq. (43) becomes negative,
at which point the frequency passes from being a complex number to being a pure imaginary number.

For D ¼ 1, bifurcation occurs at ki � 1:232. The point of bifurcation shifts to progressively lower values of ki as D is increased.
In all plots, the lower branch (dashed line) keeps negative for all ki larger than the bifurcation value, while the upper branch of
the solution (solid line) rises to higher frequencies and crosses the line where XAV;0 ¼ 0 exactly at the same value of ki where
X2

00 ¼ 0 in Fig. 1. Unstable behavior is therefore expected for bandwidth factors larger than this threshold value. This result
clearly shows that the use of artificial viscosity does not increase the range of ki for which linear stability of the method
is expected. Setting a� 1 results in upper branches that peak at much lower positive frequencies, and therefore in slower
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Fig. 6. Numerical results for the collision of two strong shocks as calculated using conventional SPH ð� ¼ 0Þwith 100 (open circles) and 1000 particles (filled
circles). The profiles are compared with the exact solution (solid line) at t ¼ 0:035 units. The calculation with 1000 particles reproduces the analytical
solution with high accuracy.
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growing rates of instability. As before, the range of ki for which stable behavior occurs decreases as the number of neighbors is
increased.

5.3. Case in which a–0 and g1–0

If we add an artificial heat flux, the dependence of the frequency on ki is given by solving the quartic polynomial of Eq. (32).
This time the solution admits four independent complex roots for the frequency. Figs. 4 and 5 shows the imaginary part of
these four roots as a function of ki for a ¼ 1 and g1 ¼ 0:2, using the Gaussian kernel and the same parameters as before. For
low values of ki, the imaginary part of all four frequencies vanishes for a short interval, which becomes shorter as D is increased.
As a consequence, the solution is marginally stable in these regions. At ki � 0:328, the solution bifurcates into three distinct
branches for D ¼ 1. The same is also true for all other values of D, with the bifurcation point shifting to lower values of ki

for larger D (i.e., ki � 0:08 for D ¼ 4). In all plots, the upper branch (dotted line) depicts the most relevant root for the purposes
of our analysis. The other two frequencies (solid and dot–dashed lines) correspond to stable solutions, with ImðXAV ;AHÞ < 0. At
higher ki’s, the lowest branch (solid line) undergoes a new bifurcation (at ki � 1:232 for D ¼ 1 and ki � 0:312 for D ¼ 4). For
D ¼ 1 and 2=3, this part of the solution is the same of that displayed in Figs. 2 and 3, with the upper branch (dashed line) rising
and becoming positive at ki � 1:416 (for D ¼ 1) and � 0:944 (for D ¼ 3=2). However, for D P 2 the solution changes qualita-
tively as the lowest initial branch (solid line) bifurcates into two new frequencies which always correspond to stable solutions,
with ImðXAV ;AHÞ < 0 for most of the entire ki spectrum.

The appearance of the upper branch (dotted line) at low values of ki means that the linear stability of the method is clearly
affected by the artificial heating. If lower values of g1 are tried, the result will be qualitatively similar except that the upper
branch will peak at much lower positive values of ImðXAV ;AHÞ, resulting in a decreased rate of growth of the instability. There-
fore, it appears that dropping the first term on the right-hand side of Eq. (11) may improve the stability properties of the
method. However, we shall see in next section that for applications of the method to shock problems, the numerical solution
near a contact discontinuity improves when g1 is either < 0:01 or, in any case, much lower than g2. It should be noticed that
for finite values of g1, the present analysis still predicts stable solutions provided that ki is sufficiently small. In shock sim-
ulations, this occurs for a wide range of the ADKE parameters j and �, with little dependence on the spatial resolution
allowed.
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Fig. 7. Numerical results for the collision of two strong shocks as calculated using the ADKE method with 100 particles and different choices of the
sensitivity parameter: � ¼ 0:2 (open circles), � ¼ 0:5 (filled circles), and � ¼ 0:8 (crosses). The numerical solutions are compared with the exact one (solid
line) at t ¼ 0:035 units.
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6. Convergence and consistency

In order to study the consistency of our SPH scheme (i.e., its convergence to a physical solution) we parallel the analysis
performed by Rasio [53] for the propagation of a linear acoustic wave in one-space dimension. In particular, consistency of
SPH will demand considering the behavior of the solution as a function of three independent parameters, namely the total
number of particles N filling the computational domain, the number of neighborsN s, and the smoothing length h. In practice,
convergence towards the exact solution requires N !1 and h! 0, whereas full consistency of SPH requires both N !1
and N s !1 along with h! 0 such that N s=N ! 0 [53].

The exact dispersion relation for the propagation of a longitudinal sound wave is given by Eq. (18) and its counterpart SPH
form by Eq. (37), where the indexed quantities in this latter expression are defined by the summations (20)–(26). This rela-
tion has been derived for the case of a one-dimensional gas represented by an infinite string of equidistant SPH particles, all
with the same mass. This simple problem allows us to calculate analytically the error present in the SPH solution and to
study its behavior in terms of N;N s, and h. In Section 4.2, we have also shown that in the long wavelength limit, which cor-
responds to k! 0, Eq. (37) becomes identical to the continuum dispersion relation (18) as long as h=Dx0 !1. This latter
limit is equivalent to a large number of neighbors, N s !1. Now suppose that we take the k! 0 and N !1 limits of
Eq. (37) by keeping the value of the ratio h=Dx0 arbitrary, so that N s remains finite. In this case, Eq. (37) takes the form
Fig. 8.
sensitiv
line) at
c2
SPH

c2
0

¼ ðc� 2Þ
c

Dx0

XN s

j¼1

x0;ij
@Wij

@x0;i

 !2

þ 1
c

Dx0

XN s

j¼1

x2
0;ij
@2Wij

@x2
0;i

; ð46Þ
where we have made use of Eq. (31) and defined c2
SPH ¼ x2=k2. It is easy to see from Eq. (46) that if we shift the position of

particle i to the origin so that x0;i ¼ 0, the first term on the right-hand side vanishes and so only the second term contributes.
Using the kernels defined by Eqs. (44) and (45) to evaluate Eq. (46), we may see that cSPH does not converge to c0. This implies
that taking the combined limits N !1 and h! 0 while keeping N s constant results in an inconsistent scheme. In order to
recover consistency both N and N s should be increased, with N increasing faster than N s so that h! 0 in the process [53].
This is precisely what we did in Section 4.2. However, to correctly determine the leading error term in the dispersion relation
we must follow a slightly different approach. First, we take the limit when N s � 1 so that the summations in Eq. (37) can be
replaced by integrals over the infinite string of particles. In doing so, we find that
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Numerical results for the collision of two strong shocks as calculated using the ADKE method with 1000 particles and different choices of the
ity parameter: � ¼ 0:2 (open circles), � ¼ 0:5 (filled circles), and � ¼ 0:8 (crosses). The numerical solutions are compared with the exact one (solid
t ¼ 0:035 units.
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which is valid for any value of the wavenumber k. Next, we calculate the limiting form of Eq. (47) when k! 0, which yields
c2
SPH

c2
0

! 1� 1� 1
c

� �
k2
Z þ1

�1
x2Wðx;hÞdxþOðk4Þ; ð48Þ
where we have used Taylor expansions for the sine and cosine functions. This expression shows that the leading error term
in the SPH dispersion relation is Oðk2Þ and that the SPH solution converges to the exact solution in the limits N s=N ! 0 and
h! 0. We may also see from Eq. (48) that for isothermal gases ðc ¼ 1Þ the integral on the right-hand side vanishes, produc-
ing a leading error of Oðk4Þ. We note that consistency of SPH is, in general, independent of the form of the smoothing kernel.
However, noting that for a string of SPH particles N s ¼ 2D and that Wðx;hÞ 	 wðxÞ=h, where wðxÞ is the dimensionless form
of the kernel and h ¼ DDx0k for the ADKE procedure, we see that improved accuracy of the scheme can be obtained for larger
values of the dilation factor, D, provided that stable values of k are chosen. In next section we shall see that, for practical
purposes, accurate solutions with the ADKE scheme are always obtained when N s=N ¼ 2D=N � 1 with little dependence
on the smoothness of the kernel.

7. Numerical tests

The ADKE method has been shown to work quite well for a number of one- and two-dimensional shock test problems
[36], involving the Sod’s [37] shock-tube, the blast wave [33], the wall shock, the cylindrical Noh’s [44] shock implosion,
and the Sedov [54] point explosion. In this section, we test the ability of the method for a suite of more stringent test cases.
Because of the short wavelength character of the instability, we expect the outcome of the numerical simulations to fit fairly
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well the predictions of the linear analysis. We anticipate that the numerical solutions are essentially independent of whether
Eqs. (44) or (45) is used.

7.1. Collision of two strong shocks

As a first test we consider the collision of two strong shocks introduced by Toro [38]. The initial conditions consist of gas
with c ¼ 1:4 and left ðx < 0:4Þ and right states ðx P 0:4Þ given by qL ¼ 5:99924;vL ¼ 19:5975; pL ¼ 460:894 and qR ¼
5:99242;vR ¼ �6:19633; pR ¼ 46:0950, respectively. The solution to this problem contains a left facing shock, moving slowly
to the left, a right traveling contact discontinuity, and a shock wave moving to the right. This test model has been recently
recalculated by Ferrari et al. [32] to test their Godunov-type SPH scheme in Lagrangian coordinates. Transmissive boundary
conditions are applied at the extremes x ¼ 0 and x ¼ 1 of the computational domain.

We consider two independent sequences of calculations for varied sizes of the kernel support ð0 6 D 6 4Þ and values of
the ADKE sensitivity parameter ð0 6 � 6 0:8Þ, which differ only in the spatial resolution allowed. One sequence uses 100 par-
ticles and the other 1000 particles, all uniformly distributed along the interval 0 6 x 6 1. In all cases, we use a ¼ b ¼ 1;
g1 ¼ 0:02; g2 ¼ 0:4;j ¼ 1, and a constant time step (Dt ¼ 5
 10�5 for the runs with 100 particles and 5
 10�6 for the runs
with 1000 particles). Fig. 6 shows the numerical profiles for a calculation with 100 (open circles) and 1000 particles (filled
circles) as compared with the exact solution (solid line) at t ¼ 0:035 units, using standard SPH (i.e., � ¼ 0) and D ¼ 3=2. We
see that the low-resolution run (open circles) produces too smooth density and internal energy profiles at the contact dis-
continuity, causing a large amplitude wiggling in the pressure. Also the left and right shocks are not well solved and small
amplitude oscillations are present for the density, velocity, and pressure in the star region of the flow close to the right shock.
When the resolution is increased to 1000 particles (filled circles), standard SPH produces much sharper profiles for this test.
The contact discontinuity is now very well solved and only a small-amplitude wiggle is still present in the pressure. The left
and right shocks are also well reproduced, with postshock values within a few percent of the exact solution. Our results show
that standard SPH yields accurate profiles for this test provided that the spatial resolution is increased.

With the ADKE method the solution does not improve much when working at low resolution. This is shown in Fig. 7,
where the numerical solution with D ¼ 1 is compared for three different choices of �, namely � ¼ 0:2 (open circles), 0.5 (filled
circles), and 0.8 (crosses). The solutions are similar to the one in Fig. 6 with � ¼ 0 and, except for the large amplitude wiggling
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in the pressure, to those obtained by Ferrari et al. [32], using their Godunov-type SPH method with 100 particles. When the
same models are rerun with 1000 particles, the results improve again as shown in Fig. 8 for D ¼ 3=2. Only very small differ-
ences appear when � is varied. For these runs, the variation of ki ¼ hi=h0 with distance is depicted in Fig. 9. We see that ki

varies in a small interval that falls well within the region where the linear analysis predicts marginal stability (see Figs. 4
and 5). The largest variations of ki always occur for � ¼ 0:8 (crosses), where the bandwidth factors are more sensitive to vari-
ations in the density. Increased values of the dilation factor result essentially in the same profiles of Fig. 8.
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Fig. 12. Spatial dependence of the bandwidth factors, ki ¼ hi=h0, for four separate runs of the strong shock-tube with D ¼ 1 and different choices of the
sensitivity parameter: � ¼ 0:2 (open circles), � ¼ 0:5 (filled circles), and � ¼ 0:8 (crosses). For comparison, the spatial dependence of ki is also shown for the
run of Fig. 11 (open squares).
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Fig. 11. Numerical results of the shock-tube problem containing a very strong shock as calculated with 1000 particles, using the ADKE method (filled
circles) with a larger size of the kernel support ðD ¼ 3=2Þ, � ¼ 0:8, g1 ¼ 0:2, and g2 ¼ 1.
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Fig. 13. Density, velocity, and bandwidth factor profiles for the two blast waves test as calculated with 5000 particles, using standard SPH (� ¼ 0, solid line)
and the ADKE method (filled dots) with D ¼ 1; � ¼ 0:8; g1 ¼ 0:2, and g2 ¼ 1. The sequence of times is: (a) 0.010, (b) 0.016, (c) 0.026, (d) 0.028, (e) 0.030, (f)
0.032, (g) 0.034, and (h) 0.038 units. While standard SPH performs bad for this test, the ADKE scheme reproduces all features of the multiple wave
interactions and compares quite well with the accurate solution reported in [33].
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thinness of the discontinuities on the grid for Godunov-type methods. The initial conditions consist of an ideal gas at rest
with c ¼ 1:4 and three constant states given by ðqL ¼ 1;vL ¼ 0; pL ¼ 103Þ for 0 6 x < 0:1; ðqM ¼ 1;vM ¼ 0; pM ¼ 10�2) for
0:1 6 x < 0:9, and (qR ¼ 1;vR ¼ 0; pR ¼ 102) for 0:9 6 x < 1. The boundaries at x ¼ 0 and x ¼ 1 are solid walls. Therefore,
we apply reflective boundary conditions for the velocity and continuity conditions for all other variables at the walls. These
conditions result in two blast waves that collide, producing a new contact discontinuity. The evolution for this test is quite
complex and we refer the reader to [33] for a detailed discussion of the various interactions that occur.

Since there is no known analytical solution available for this problem, we have developed an accurate solution using the
ADKE method with 5000 equidistant particles inside the interval 0 6 x 6 1. The best solution was chosen from a series of
runs with varied values of D, �, and g2. The other parameters were fixed to j ¼ 1, g1 ¼ 0:2, and a ¼ b ¼ 1. The best solution
was obtained for D ¼ 1, � ¼ 0:8, and g2 ¼ 1 and is displayed in Fig. 13 (open circles) at the same discrete times of Fig. 2 in
[33], where an accurate solution to this problem is given. A close comparison between both solutions shows that the ADKE
scheme has been quite successful at reproducing the several complex details with high accuracy. The solid line in Fig. 13 also
depicts the profiles as they were obtained using standard SPH ð� ¼ 0Þ. The two blast waves penetrate into the intermediate
low pressure gas. Meantime, strong rarefaction waves form and propagate outward towards the walls, where they are re-
flected back. The Mach numbers of the left and right shocks are approximately 170 and 51, respectively. This difference
causes the two shocks to exhibit structural differences, as seen in Fig. 13(a)–(c). At t ¼ 0:028 (Fig. 13(d)), the shocks collide
and produce a sharp density spike. The reflected rarefaction waves have by this time caught up with the shocks and weak-
ened them. On either side of the density spike, there is a contact discontinuity. The profiles of the density and velocity shown
in Fig. 13(e)–(h) are the result of multiple interactions of strong nonlinear continuous waves and a variety of discontinuities.

The effects of increasing the dilation factor to D ¼ 2 are shown in Fig. 14 (open circles) at t ¼ 0:016;0:028; and 0:038
units. The solution is compared with that of Fig. 13, which is now represented by the solid line. We see that both solutions
are almost identical except that the sharp density spike, which forms when the two blast waves collide, appears to be slightly
down for the case when D ¼ 2. This is an affect of broadening the kernel which increases the amount of smoothing. In addi-
tion, Figs. 15 and 16 show the solution at the same times of Fig. 14, when the resolution has been decreased to 2500 and 1000
particles, respectively. We see that dropping the resolution to 2500 particles does not appear to affect the evolution, apart
from a further slight reduction of the density spike. When 1000 particles are used, the evolution results in a much short den-
sity spike at the time when the two blast waves collide and in a smoother profile in the higher density regions at t ¼ 0:038,
resulting from the interaction of the left-moving rarefaction wave with the central contact discontinuity. These results give
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Fig. 16. Same ADKE calculation as in Fig. 13 but with 1000 particles (filled circles) at (a) t ¼ 0:016, (b) 0.028, and (c) 0.038 units. The solid line corresponds
to the accurate ADKE solution of Fig. 13.
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a convincing evidence of the stability and resolving power of the SPH method when it is combined with the ADKE proce-
dure.
8. Conclusions

We have described an alternative SPH scheme to SPH Godunov-type methods for the simulation of highly supersonic
compressible flows involving strong shock waves. The method combines standard SPH with an adaptive density estimation
kernel (ADKE) algorithm, which solves the flow in low-density regions with the minimum necessary smoothing. In brief,
the ADKE method consists of constructing a collection of local bandwidth factors, or kernel estimates, using the particle den-
sity distribution. Unlike existing adaptive SPH formulations, this procedure needs less broad kernels in regions where the
density is low. The definition of the local bandwidth factors involves two free parameters, which depending on the problem
at hand, can be conveniently chosen to reduce the rates of numerical dissipation and diffusion.

We have performed a von Neumann stability analysis of the SPH equations for an ideal gas to study the stability of the
method in response to propagating longitudinal sound waves. Solution of the dispersion relation in the short wavelength
limit shows that the method is stable for a wide range of the ADKE parameters provided that the linear contribution of
the artificial heat flux is always kept at a sufficiently low value. This is usually the case near a strong shock, where the
nonlinear contribution of the artificial heat flux overwhelms the linear one. Application of the method to high Mach num-
ber shocks confirms the predictions of the linear stability analysis. We have carried out a large number of simulations
with varied initial number of particles and values of the ADKE parameters for a set of difficult test problems, involving
the collision of two strong shock waves [38], the shock-tube with a very strong shock [39], and the two interacting blast
waves [33]. These tests complement the suite of one- and two-dimensional tests that have been previously carried out
with the present method by Sigalotti et al. [36]. The results obtained for this new set of tests demonstrate that the meth-
od performs quite well at handling complex phenomena involving multiple interactions of strong shocks and rarefaction
waves with each other and with contact discontinuities. The accuracy of the results is comparable to that obtained with
Godunov-type schemes and SPH formulations based on Riemann solvers. The ADKE scheme has other advantages in that
it is quite simple to implement and does not require special modifications when applied to two- and three-dimensional
flows.
x
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